Volume 5, Issue 2, April 2017, Page: 19-31
Laser Technologies in Spintronics and Nanoelectronics as the Method of Changing the Structure and Magnetic Characteristics of Thin Films
Мykola М. Krupa, Department of Magnetic Nanostructures, Institute of Magnetism National Academy of Sciences and Ministry of Education and Science of Ukraine, Kiev, Ukraine
Received: Mar. 21, 2017;       Accepted: Apr. 22, 2017;       Published: Jun. 3, 2017
DOI: 10.11648/j.nano.20170502.12      View  1508      Downloads  90
Abstract
In the present article we want to consider some features of not thermal influence of laser pulses on multilayer heterogeneous nanofilms to present the results of our experimental researches of change of the roughness of a surface and magnetic characteristics of permalloy films after their irradiation nanosecond laser pulses and the results of measurement of dynamics of magnetic reversal of magnetic tunnel nanostructures with one and two magnetic nanolayers. It is shown that the photon drag effect of electrons can not only generate an electric potential difference between the input and output surfaces in a semiconductor, but may also lead to a drift of the impurities. The results of our research show that in the thin CdS single crystals can be obtained stimulated emission of electromagnetic radiation in the terahertz frequency range.
Keywords
Multilayer Magnetic Nanofilms, Laser Pulses, Photon Drag Effect, Magnetic Reversal of Nanofilms, Spin Current, Spintronic, Terahertz Radiation
To cite this article
Мykola М. Krupa, Laser Technologies in Spintronics and Nanoelectronics as the Method of Changing the Structure and Magnetic Characteristics of Thin Films, American Journal of Nano Research and Applications. Vol. 5, No. 2, 2017, pp. 19-31. doi: 10.11648/j.nano.20170502.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
M. K. El-Adawi, S. A. Shalaby, S. E. S. Abdel-Ghany, (2015), Interaction of Laser Radiation with Solids, International Journal of Natural Sciences Research, , Vol. 3, No. 6, pp. 83-100.
[2]
Femtosecond-Scale Optics, (2011), Ed. A. V. Andreev, Publisher: InTech, Chapters, p. 446.
[3]
A. M. Danishevskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, (1970) Photon drag effect of the free carriers in direct interband transitions in semiconductors, Sov. Phys. JETP, Vol. 31, pp. 292-297.
[4]
A. F. Gibson, M. F. Kimmitt, and A. C. Walker, (1970), Photon drag in Germanium, Appl. Phys. Lett., Vol. 17, pp. 75-79.
[5]
A. Ashkin, (1972), The pressure of laser light, Scientific American, Vol. 226, No. 2, pp.63-71.
[6]
W. D. Phillips, (1998), Laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Vol. 70, No. 3, pp. 721-741.
[7]
F. H. Gelmuhanov, A. M. Shalagin, (1979). Light-induced diffusion of gases, Sov. JETF Letters, Vol. 29, pp.773-776.
[8]
H. Ohno, (1998), Making Nonmagnetic Semiconductors Ferromagnetic, Science, vol. 281, pp. 951–956.
[9]
J. Cibert, J. Bobo, U. Lüders, (2005) Development of new materials for spintronics, Comptes Rendus Physique, Vol. 6, pp. 977-996.
[10]
H. Raether, (1986), Surface plasmons on smooth and rough surfaces and on gratings, Heidelberg, Springer-Verlag, p.136.
[11]
E. G. Bortchagovsky, S. Klein, U. C. Fischer, (2009), Surface plasmon mediated tip enhanced Raman scattering, Appl. Phys. Lett., Vol. 94, pp.063118-06321.
[12]
G. A. Askaryan, M. C. Rabiovych, A. D. Smirnova and V. B. Studentov, (1967), The currents generated in the material by radiation pressure of the laser beam, Sov. JETF Letters, Vol. 5, pp. 116-118.
[13]
M. M. Krupa, (2001), Light induced drift electrons in thin magnetic films, JETPh, Vol. 120, No.11, pp. 10-15.
[14]
A. Yu. Bonchika, S. G. Kijak, Z. Gotrab,W. Proszakc, (2001), Laser technology for submicron-doped layers formation in semiconductors, Optics & Laser Technology, Vol. 33, pp. 589-591.
[15]
W. Kautek, P. Rudolph, G. Daminelli and J. Krüger, (2005), Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures, Appl. Phys. A, Vol. 81, No. 1, pp. 65-70.
[16]
M. M. Krupa, Yu. B. Skirta, (2006), Drift of atoms of bismuth in the field of laser radiation and a data recording in thin films phthalocyanine dye, Radiophysic and Quantum Electronic, Vol. XLІХ, No. 6, pp. 513-518.
[17]
R. Merservey, P. M. Tedrov, (1994), Spin-Polarized Electron Tunneling, Phys. Rep., Vol. 238, No. 4, pp. 175-239.
[18]
M. M. Krupa, A. M. Korostil, (2007), Impact of laser irradiation on magneto-optical properties of multilayered film structures, Inter. Journal of Modern Physics B, Vol. 21, No. 32, pp. 5339-5350.
[19]
M. Komori, T. Nukata, K. Tsutsumi, C. Inokyti, I. Sakyrai, (1984), Amorphous TbFe Films for Magnetic Printing with Laser Writing, IEEE Trans. Magnetic, Vol. 20, No. 5, pp. 1042-1044.
[20]
A. V. Kimel, B. A. Ivanov, R. V. Pisarev, P. A. Usachev, A. Kirilyuk, Th. Rasing, (209), Inertia-driven spin switching in antiferromagnets, Nature Physics, vol. 5, pp. 727-731.
[21]
T. A. Ostler, J. Barker, R. F. Evans, et al., (2012), Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet,” Nature Communications, No. 3, pp.1-6.
[22]
R. Pittini, P. Wachter, (1998), Cerium compounds: The new generation magneto-optical Kerr rotators with unprecedented large figure of merit, JMMM, Vol. 186, No. 3, pp. 306-312.
[23]
R. Hertel, (2006), Theory of Optical Rotation, Faraday Effect, and Inverse Faraday Effect, Journal of Magnetism and Magnetic Materials, Vol. 303, pp. L1–L4.
[24]
J. C. Slonczewski, (1996), Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, Vol. 159, pp. L1-L7.
[25]
M. M. Krupa, (2013), Switching of Magnetic Films by Femtosecond Laser Pulses and Control Spin Current, Advances in Optoelectronic Materials, Vol. 1 No. 3, pp. 48-58.
[26]
M. M. Krupa, (2008), Spindependent tunnel conductivity in films TbCoFe/Pr6O11/TbCoFe. JETPh Letters Vol. 87, No. 10, p.p. 635-637.
[27]
J. Katine, F. Albert, R. Buhrman E. B. Myers and D. C. Ralph., (2000), Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillar, Phys. Rev. Letters, Vol. 84, pp. 3149–3152.
[28]
M. Julliere, (1975), Tunneling between ferromagnetic films, Phys. Letter., Vol. 54, No. 3, pp. 225-226.
[29]
I. Zuti´c, J. Fabian, and S. Das Sarma, (2004), Spintronics: Fundamentals and Applications, Rev. Mod. Phys., Vol. 76, No. 2, pp. 323-410.
[30]
M. M. Krupa, (2014), Patent of Ukraine 19 UA 106260 Method of a magnetic recording of the information and a magnetic spin data carrier. Publ11.08.2014, bull. №15.
[31]
M. M. Krupa, (2009), Patent 19 UA №86248 19UA Ukraine, The device for laser terrahertz generation. Publ 10.04. 2009, bull. №7.
Browse journals by subject