Volume 2, Issue 6-1, December 2014, Page: 53-60
Investigations on the Hydrothermal Synthesis of Pure and Mg-Doped Nano-CuCrO2
Dirk Friedrich, Wilhelm-Ostwald-Institute of Theoretical and Physical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
Received: Nov. 16, 2014;       Accepted: Nov. 19, 2014;       Published: Dec. 23, 2014
DOI: 10.11648/j.nano.s.2014020601.17      View  3391      Downloads  250
Abstract
This paper presents some investigations on the hydrothermal synthesis of nano-CuCrO2. Several successively altered synthesis protocols are used to investigate effects of changing the mineralizer amount, lowering reaction temperature and addition of a reducing agent. As a result modified protocols for the hydrothermal synthesis of pure and Mg-doped CuCrO2 are presented. Different washing and annealing steps are used to perform a comparative XRD-study on these materials.
Keywords
Delafossite, CuCrO2, Hydrothermal Synthesis
To cite this article
Dirk Friedrich, Investigations on the Hydrothermal Synthesis of Pure and Mg-Doped Nano-CuCrO2, American Journal of Nano Research and Applications. Special Issue: Advanced Functional Materials. Vol. 2, No. 6-1, 2014, pp. 53-60. doi: 10.11648/j.nano.s.2014020601.17
Reference
[1]
O. Crottaz, F. Kubel, "Crystal structure of copper(I) chromium(III) oxide, 2H-CuCrO2" Z. Kristallogr. 211 (1996) 481.
[2]
D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wang, Y.-B. Cheng, "Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells" J. Mater. Chem. 22 (2012) 24760.
[3]
D. Xiong, W. Zhang, X. Zeng, Z. Xu, W. Chen, J. Cui, M. Wang, L. Sun, Y.-B. Cheng, "Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals" ChemSusChem 6 (2013) 1432–1437.
[4]
X. Xu, B. Zhang, J. Cui, D. Xiong, Y. Shen, W. Chen, L. Sun, Y. Cheng, M. Wang, "Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes" Nanoscale 5 (2013) 7963–7969.
[5]
S. Powar, D. Xiong, T. Daeneke, M.T. Ma, A. Gupta, G. Lee, S. Makuta, Y. Tachibana, W. Chen, L. Spiccia, Y.-B. Cheng, G. Götz, P. Bäuerle, U. Bach, "Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles" J. Phys. Chem. C 118 (2014) 16375–16379.
[6]
R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, "p-type conductivity in CuCr1−xMgxO2 films and powders" J. Appl. Phys. 89 (2001) 8022.
[7]
K. Hayashi, K.-i. Sato, T. Nozaki, T. Kajitani, "Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2" Jpn. J. Appl. Phys. 47 (2008) 59–63.
[8]
R. Bywalez, S. Götzendörfer, P. Löbmann, "Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films" J. Mater. Chem. 20 (2010) 6562.
[9]
Q. Meng, S. Lu, S. Lu, Y. Xiang, "Preparation of p-type CuCr1−xMgxO2 bulk with improved thermoelectric properties by sol–gel method" J. Sol-Gel Sci. Technol. 63 (2012) 1–7.
[10]
M.J. Han, Z.H. Duan, J.Z. Zhang, S. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, "Electronic transition and electrical transport properties of delafossite CuCr1−xMgxO2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: A composition dependence study" J. Appl. Phys. 114 (2013) 163526.
[11]
W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, K.R. Poeppelmeier, "Hydrothermal Synthesis of Delafossite-Type Oxides" Chem. Mater. 18 (2006) 7–20.
[12]
S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, X. Zhu, "Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals" J. Cryst. Growth 310 (2008) 5375–5379.
[13]
S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, "Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals" Sensor Actuat. B-Chem. 143 (2009) 119–123.
[14]
M. Miclau, D. Ursu, S. Kumar, I. Grozescu, "Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method" J. Nanopart. Res. 14 (2012).
[15]
D. Ursu, M. Miclau, I. Grozescu, "In situ variable temperature X-ray diffraction studies on size scale of CuCrO2 polytypes with delafossite structure" J. Optoelectron. Adv. M. 15 (2013) 768–773.
[16]
D.H. Ursu, M. Miclău, R. Bănică, I. Grozescu, "Hydrothermal synthesis and optical characterization of Ni-doped CuCrO2 nanocrystals" Phys. Scr. T157 (2013) 14053.
[17]
D. Ursu, M. Miclau, "Thermal stability of nanocrystalline 3R-CuCrO2" J. Nanopart. Res. 16 (2014).
[18]
R. Srinivasan, B. Chavillon, C. Doussier-Brochard, L. Cario, M. Paris, E. Gautron, P. Deniard, F. Odobel, S. Jobic, "Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis" J. Mater. Chem. 18 (2008) 5647.
[19]
M. Yu, T.I. Draskovic, Y. Wu, "Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates" Inorg. Chem. 53 (2014) 5845–5851.
[20]
A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert, M. Poienar, D. Pelloquin, "On the strong impact of doping in the triangular antiferromagnet CuCrO2" Solid State Commun. 149 (2009) 962–967.
[21]
M.A. Khilla, Z.M. Hanafi, A.K. Mohamed, "Physico-chemical properties of chromium trioxide and its suboxides" Thermochim. Acta 59 (1982) 139–147.
[22]
P.G. Harrison, N.C. Lloyd, W. Daniell, "The Nature of the Chromium Species Formed during the Thermal Activation of Chromium-Promoted Tin(IV) Oxide Catalysts: An EPR and XPS Study" J. Phys. Chem. B 102 (1998) 10672–10679.
[23]
S. Labus, A. Malecki, R. Gajerski, "Investigation of thermal decomposition of CrOx (x ≥ 2.4)" J. Therm. Anal. Calorim. 74 (2003) 13–20.
[24]
T.K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan, "The electronic structure of the CuRh1−xMgxO2 thermoelectric materials: An X-ray photoelectronspectroscopy study" J. Solid State Chem. 184 (2011) 2387–2392.
Browse journals by subject