Volume 3, Issue 1-1, January 2015, Page: 13-17
Liposome-Based Nanosensors for Biological Detection
Changfeng Chen, Department of Chemistry, University of Maine, Orono, ME, USA; Kashiv Pharma LLC, Bridgewater, NJ, USA
Qiong Wang, Department of Chemistry, University of Maine, Orono, ME, USA
Received: Dec. 7, 2014;       Accepted: Dec. 31, 2014;       Published: Jan. 23, 2015
DOI: 10.11648/j.nano.s.2015030101.13      View  3337      Downloads  240
Abstract
Liposomes are self-assembled structures that contain an inner aqueous compartment surrounded by a lipid bilayer. This unique structure inherently provides liposomes with a powerful capability for encapsulating hydrophilic, hydrophobic or amphiphilic molecules or nanoparticles. Combining this property with appropriate signal amplification strategies and transduction techniques results in a variety of in vitro or in vivo biological sensors. In this review article, we discuss the latest trends in engineering and applications of liposome based nanosensors for biological sensing. Particular focus was made on the coupling of liposomes with popular sensor materials (enzymes, quantum dots, metal nanoparticles and other sensor enhancement elements) for highly sensitive and selective detection of chemical and biological species. Such information will be viable in terms of providing a useful platform for designing future ultrasensitive liposome nanosensors.
Keywords
Liposome, Sensor, Nanotechnology, Lipid Bilayer, Ultrasensitive, Biological, Encapsulation
To cite this article
Changfeng Chen, Qiong Wang, Liposome-Based Nanosensors for Biological Detection, American Journal of Nano Research and Applications. Special Issue: Nanomaterials and Nanosensors for Chemical and Biological Detection. Vol. 3, No. 1-1, 2015, pp. 13-17. doi: 10.11648/j.nano.s.2015030101.13
Reference
[1]
A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of Univalent Ions across Lamellae of Swollen Phospholipids, Journal of Molecular Biology, 13 (1965) 238-&.
[2]
C. Chen, C.P. Tripp, An infrared spectroscopic based method to measure membrane permeance in liposomes, Biochim. Biophys. Acta Biomembranes, 1778 (2008) 2266-2272.
[3]
C. Chen, C.P. Tripp, A comparison of the behavior of cholesterol, 7-dehydrocholesterol and ergosterol in phospholipid membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1818 (2012) 1673-1681.
[4]
C.F. Chen, C.H. Jiang, C.P. Tripp, Molecular dynamics of the interaction of anionic surfactants with liposomes, Colloids and Surfaces B-Biointerfaces, 105 (2013) 173-179.
[5]
B. Ceh, D.D. Lasic, Kinetics of accumulation of molecules into liposomes, J. Phys. Chem. B, 102 (1998) 3036-3043.
[6]
R. Banerjee, Liposomes: Applications in medicine, J. Biomater. Appl., 16 (2001) 3-21.
[7]
M. Willander, K. Khun, Z.H. Ibupoto, Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements, Sensors, 14 (2014) 8605-8632.
[8]
Z. Taleat, A. Khoshroo, M. Mazloum-Ardakani, Screen-printed electrodes for biosensing: a review (2008-2013), Microchim. Acta, 181 (2014) 865-891.
[9]
X.H. Shi, W. Gu, B.Y. Li, N.N. Chen, K. Zhao, Y.Z. Xian, Enzymatic biosensors based on the use of metal oxide nanoparticles, Microchim. Acta, 181 (2014) 1-22.
[10]
M. Ates, A review study of (bio)sensor systems based on conducting polymers, Materials Science & Engineering C-Materials for Biological Applications, 33 (2013) 1853-1859.
[11]
X. Han, G. Li, G. Li, K. Lin, FTIR Study of the Thermal Denaturation of α-Actinin in Its Lipid-Free and Dioleoylphosphatidylglycerol-Bound States and the Central and N-Terminal Domains of α-Actinin in D2O, Biochemistry (Mosc). 37 (1998) 10730-10737.
[12]
M. Martí, Zille, A. , Cavaco-Paulo, A. , Parra, J. and Coderch, L., Laccases stabilization with phosphatidylcholine liposomes, Journal of Biophysical Chemistry, 3 (2012) 81-87.
[13]
P. Walde, S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, 18 (2001) 143-177.
[14]
V. Vamvakaki, N.A. Chaniotakis, Pesticide detection with a liposome-based nano-biosensor, Biosens. Bioelectron., 22 (2007) 2848-2853.
[15]
W.C.W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281 (1998) 2016-2018.
[16]
W.R. Algar, D. Wegner, A.L. Huston, J.B. Blanco-Canosa, M.H. Stewart, A. Armstrong, P.E. Dawson, N. Hildebrandt, I.L. Medintz, Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing, J. Am. Chem. Soc., 134 (2012) 1876-1891.
[17]
J. Zhou, Q.X. Wang, C.Y. Zhang, Liposome-Quantum Dot Complexes Enable Multiplexed Detection of Attomolar DNAs without Target Amplification, J. Am. Chem. Soc., 135 (2013) 2056-2059.
[18]
Y.Y. Su, Y.N. Xie, X.D. Hou, Y. Lv, Recent Advances in Analytical Applications of Nanomaterials in Liquid-Phase Chemiluminescence, Applied Spectroscopy Reviews, 49 (2014) 201-232.
[19]
X. Gao, W.C.W. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding, BIOMEDO, 7 (2002) 532-537.
[20]
N. Khemthongcharoen, R. Jolivot, S. Rattanavarin, W. Piyawattanametha, Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment, Adv. Drug Deliv. Rev., 74 (2014) 53-74.
[21]
C.L. Wang, Y.X. Zhang, M.D. Xia, X.X. Zhu, S.T. Qi, H.Q. Shen, T.B. Liu, L.M. Tang, The Role of Nanotechnology in Single-Cell Detection: A Review, Journal of Biomedical Nanotechnology, 10 (2014) 2598-2619.
[22]
Y. Zhang, C.-y. Zhang, Sensitive Detection of microRNA with Isothermal Amplification and a Single-Quantum-Dot-Based Nanosensor, Anal. Chem., 84 (2011) 224-231.
[23]
B. Scholl, H.Y. Liu, B.R. Long, O.J.T. McCarty, T. O’Hare, B.J. Druker, T.Q. Vu, Single Particle Quantum Dot Imaging Achieves Ultrasensitive Detection Capabilities for Western Immunoblot Analysis, ACS Nano, 3 (2009) 1318-1328.
[24]
C.-Y. Zhang, H.-C. Yeh, M.T. Kuroki, T.-H. Wang, Single-quantum-dot-based DNA nanosensor, Nat Mater, 4 (2005) 826-831.
[25]
S.W. Zeng, D. Baillargeat, H.P. Ho, K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43 (2014) 3426-3452.
[26]
P.D. Howes, R. Chandrawati, M.M. Stevens, Colloidal nanoparticles as advanced biological sensors, Science, 346 (2014) 53-+.
[27]
C.J. Feng, S. Dai, L. Wang, Optical aptasensors for quantitative detection of small biomolecules: A review, Biosens. Bioelectron., 59 (2014) 64-74.
[28]
M. Bhuvana, J.S. Narayanan, V. Dharuman, W. Teng, J.H. Hahn, K. Jayakumar, Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing, Biosens. Bioelectron., 41 (2013) 802-808.
[29]
G.L. Damhorst, C.E. Smith, E.M. Salm, M.M. Sobieraj, H.K. Ni, H. Kong, R. Bashir, A liposome-based ion release impedance sensor for biological detection, Biomed. Microdevices, 15 (2013) 895-905.
[30]
L. Mao, R. Yuan, Y.Q. Chai, Y. Zhuo, Y. Xiang, Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay, Biosens. Bioelectron., 26 (2011) 4204-4208.
Browse journals by subject