Volume 5, Issue 3-1, May 2017, Page: 37-41
Acoustic Detection of Resonance Plasticizing of LiF Crystals Under the Influence of Crossed Magnetic Fields in the EPR Scheme
D. Driaev, E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
M. Galustashvili, E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
S. Tsakadze, E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Received: Feb. 3, 2017;       Accepted: Feb. 4, 2017;       Published: Feb. 28, 2017
DOI: 10.11648/j.nano.s.2017050301.19      View  2479      Downloads  70
Abstract
For the first time, the possibility of acoustic detection of resonance plasticizing of non-magnetic crystals when exposed to magnetic fields in EPR scheme was demonstrated. It is experimentally observed the sharp leap of dislocation internal friction in LiF crystals in crossed magnetic fields: constant field B0 = 340 µT and HF field B~ = 10 µT at the frequency of 9.525 MHz, corresponding to the paramagnetic resonance condition hv= BB0 for g = 2 (h is the Planck’s constant, g is the Lande factor, and μB is the Bohr magneton).
Keywords
Magnetoplastic Effect, Internal Friction, Dislocation, Resonance Plasticizing, EPR
To cite this article
D. Driaev, M. Galustashvili, S. Tsakadze, Acoustic Detection of Resonance Plasticizing of LiF Crystals Under the Influence of Crossed Magnetic Fields in the EPR Scheme, American Journal of Nano Research and Applications. Special Issue: Nanotechnologies. Vol. 5, No. 3-1, 2017, pp. 37-41. doi: 10.11648/j.nano.s.2017050301.19
Reference
[1]
V. I. Alshits, E. V. Darinskaya, T. M. Perekalina, and A. A. Urusovskaya, Phys. Solid State, vol. 29, p. 467, 1987.
[2]
Yu. I. Golovin, Phys. Solid State, vol. 46, p. 789, 2004.
[3]
V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik. In: “Dislocations in Solids, vol. 14,” Ed. J. P. Hirth, Amsterdam, Elsevier, p. 333, 2008.
[4]
M. Galustashvili, D. Driaev, F. Akopov, and S. Tsakadze. Phys. Solid State, vol. 55, p. 1565, 2013.
[5]
M. Galustashvili, F. Akopov, D. Driaev, V. Kvatchadze, and S. Tsakadze. Phys. Solid State, vol. 58, p. 543, 2016.
[6]
M. Molotskii and V. Fleurov, Phil. Mag. Lett., vol. 73, p. 11, 1996.
[7]
Yu. I. Golovin, R. B. Morgunov, V. E. Ivanov, S. I. Zhulikov, and A. A. Dmitriyevsky. J. Exp. Theo. Phys. Lett., vol. 68, p. 400, 1998.
[8]
M. Molotskii, R. Kris, and V. Fleurov. Phys. Rev. B, vol. 51, p. 12531, 1995.
[9]
A. A. Svetashov, V. L. Krasnikov, and E. P. Belozerova, Crystallography, vol. 42, p. 493, 1997.
[10]
N. A. Tyapunina, V. L. Krasnikov, and E. P. Belozerova. Phys. Solid State, vol. 41, p. 1035, 1999.
[11]
A. L. Buchachenko, J. Exp. Theo. Phys., vol. 129, p. 909, 2006.
[12]
M. Galustashvili, D. Driaev, I. Politov, and Z. Saralidze. GE P2005 3499B.
[13]
D. Driaev, K. Kachiani, F. Akopov, and S. Tsakadze, Nano Studies, vol. 8, p. 283, 2013.
[14]
A. Granato and K. Lucke, In: “Physical Acoustics, vol. 4A,” Ed. W. P. Mason, New York, Academic Press, p. 225, 1966.
[15]
V. I. Alshits, E. V. Darinskaya, V. A. Morozov, V. M. Kats, and A. A. Lukin, J. Exp. Theo. Phys. Lett., vol. 91, p. 97, 2010.
Browse journals by subject