Volume 5, Issue 3-1, May 2017, Page: 42-47
Gold Nanoparticle Conjugated Organic Dye Nanocomposite Based Photostimulated Luminescent Enhancement and Its Application in Nanomedicine
Ketevan Chubinidze, Department of Biology, I. Javakhishvili Tbilisi State University, Georgia
Besarion Partsvania, Department of Biocybernetics, Institute of Cybernetics, Tbilisi, Georgia
Lali Devadze, Department of Optical-Chemical Research, Institute of Cybernetics, Tbilisi, Georgia
Tsisana Zurabishvili, Department of Optical-Chemical Research, Institute of Cybernetics, Tbilisi, Georgia
Nino Sepashvili, Department of Optical-Chemical Research, Institute of Cybernetics, Tbilisi, Georgia
Gia Petriashvili, Department of Optically Anisotropic Systems, Institute of Cybernetics, Tbilisi, Georgia
Mariam Chubinidze, Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
Received: Feb. 3, 2017;       Accepted: Feb. 4, 2017;       Published: Feb. 28, 2017
DOI: 10.11648/j.nano.s.2017050301.20      View  2297      Downloads  102
We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. It opens new possibilities for plasmonic applications in nanobiology and nanomedicine. In particular, for example, luminescent dye-conjugated GNPs and gold nanorods (GNRs), can be used to target specific cancer cells, which is very important for the diagnosis and therapy of cancer.
Luminescent Organic Dyes, Nanocomposite, Polymers, Gold Nanoparticles, Gold Nanorods, Near Infrared Spectrum, Nanomedicine
To cite this article
Ketevan Chubinidze, Besarion Partsvania, Lali Devadze, Tsisana Zurabishvili, Nino Sepashvili, Gia Petriashvili, Mariam Chubinidze, Gold Nanoparticle Conjugated Organic Dye Nanocomposite Based Photostimulated Luminescent Enhancement and Its Application in Nanomedicine, American Journal of Nano Research and Applications. Special Issue:Nanotechnologies. Vol. 5, No. 3-1, 2017, pp. 42-47. doi: 10.11648/j.nano.s.2017050301.20
T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Expr., vol. 13, pp. 5522-5527, 2005.
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003.
A. Bouhelier and G. P. Wiederrecht, “Excitation of broad band surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B, vol. 71, no. 195406, 2005.
K. E. Sapsford, L. Berti, and I. L Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor–acceptor combinations,” Angew. Chem. Int. Ed., vol. 45, pp. 4562-4589, 2006.
S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the Radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol. 35, pp. 209-217, 2006.
R. Reisfeld, M. Eyal, and D. Brusilovsky, “Luminescence enhancement of Rhodamine 6G in sol–gel films containing silver aggregates,” Chem. Phys. Lett., vol. 153, pp. 210-214, 1988.
K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence from plastic substrates: An emerging tool in biotechnology,” Currr. Open Biotechnol., vol. 16, p.55-62, 2005.
J. R. Lakowicz, “Radiative decay engineering: 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem., vol. 337, pp. 171-194, 2005.
W. Zhong, “Nanomaterials in fluorescence-based biosensing,” Anal. Bioanal. Chem., vol. 394, pp. 47-59, 2009.
M. Atlan, P. Desbiolles, M. Gross, and M. Coppey–Moisan, “Parallel heterodyne detection of dynamic light-scattering spectra from gold nanoparticles diffusing in viscous fluids,” Opt. Lett., vol. 35, pp. 787-789, 2010.
A. Borriello, P. Agoretti, A. Cassinese, P. D’Angelo, G. T. Mohanraj, and L. Sanguigno, “Electrical bistability in conductive hybrid composites of doped polyaniline nanofibers–gold nanoparticles capped with dodecane thiol,” J. Nanosci. Nanotechnol., vol. 9, pp. 6307-6314, 2009.
C.-W. Hu, Y. Huang, and R. C.-C. Tsiang, “Thermal and spectroscopic properties of polystyrene / gold nanocomposite containing well-dispersed gold nanoparticles,” J. Nanosci. Nanotechnol., vol. 9, pp. 3084-3091, 2009.
M.-C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., vol. 104, pp. 293-346, 2002.
C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev., vol. 105, pp. 1025-1102, 2005.
E. Katz and I. Willner, “Integrated nanoparticle–bio-molecule hybrid systems: Synthesis, properties, and applications,” Angew. Chem. Int. Ed., vol. 43, pp. 6042-6108, 2004.
M. J. Kogan, N. G. Bastus, R. Amigo, D. Grillo–Bosch, E. Araya, E. Araya, A. Turiel, A. Labarta, E. Giralt, and V. F. Puntes, “Nanoparticle-mediated local and remote manipulation of protein aggregation,” Nano Lett., vol. 6, pp. 110-115, 2006.
L. Shang, Ch. Qin, T. Wang, M. Wang, L. Wang, and Sh. Dong, “Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine,” J. Phys. Chem. C, vol. 111, pp. 13414-13417, 2007.
J. Griffin, A. K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu, and P. Ch. Ray, “Size-anddistance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA,” Chem. Eur. J., vol. 15, pp. 342-351, 2009.
K. G. Thomas and P. V. Kamat, “Chromophore functionalized gold nanoparticles. Review Article,” Acc. Chem. Res., vol. 36, pp. 888-898, 2003.
J. R. Lakowicz, “Principles of Fluorescence Spectroscopy, 3rd Ed.”, NewYork: Springer, 938 pp., 2006.
P. J. Cassidy, G. K. Radda, “Molecular imaging perspectives,” J. Royal Soc. Interface, vol. 2, pp. 133-144, 2005.
K. McLarty and R. M. Reilly, “Molecular imaging as a tool for personalized and targeted anticancer therapy,” Clin. Pharmacol. Ther., vol. 81, pp. 420-424, 2007.
Browse journals by subject