Volume 5, Issue 3-1, May 2017, Page: 48-55
Nanosize Clusters in InAs and InP Compounds and Their Solid Solutions InPxAs1–x
Nodar Kekelidze, Semiconductor Materials Science Laboratory, F. Tavadze Institute of Metallurgy & Materials Science, Tbilisi, Georgia; Substance Research Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia; Faculty of Informatics & Control Systems, Georgian Technical University, Tbilisi, Georgia
Elza Khutsishvili, Semiconductor Materials Science Laboratory, F. Tavadze Institute of Metallurgy & Materials Science, Tbilisi, Georgia
Zaur Kvinikadze, Substance Research Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Zinaida Davitaja, Substance Research Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
David Kekelidze, Semiconductor Materials Science Laboratory, F. Tavadze Institute of Metallurgy & Materials Science, Tbilisi, Georgia; Substance Research Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Bela Kvirkvelia, Semiconductor Materials Science Laboratory, F. Tavadze Institute of Metallurgy & Materials Science, Tbilisi, Georgia; Substance Research Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Ketevan Sadradze, Faculty of Informatics & Control Systems, Georgian Technical University, Tbilisi, Georgia
Lali Nadiradze, Faculty of Informatics & Control Systems, Georgian Technical University, Tbilisi, Georgia
George Kekelidze, BoT, Eurosolar, Bonn, Germany
Received: Feb. 3, 2017;       Accepted: Feb. 4, 2017;       Published: Feb. 28, 2017
DOI: 10.11648/j.nano.s.2017050301.21      View  2239      Downloads  68
Abstract
The compounds of indium arsenide, indium phosphide and their solid solutions are important materials for optoelectronics, microelectronics and nanotechnology. The stabilization of nanoparticles is a major problem in modern nanotechnology. The presented work can provide valuable information in the indicated direction. It has been shown that, it is possible to create nanoscale clusters and stable point type defects in crystals with the help of hard radiation. Investigations of very slow diffusion processes in irradiated crystals allow to reveal “abnormal” behavior of nanoscale clusters. It has been shown that in certain materials, the curves of the frequency dependence of the optical absorption coefficient near the fundamental edge at 300 K for a long time (about two years) do not shift to the “restoration”, but move to the opposite direction. We studied the electrical and optical properties and the heat treatment processes of crystals irradiated with fast neutron fluence (2 · 1018 n / cm2) and high-energy (50 MeV) electrons (6.0 • 1017 e / cm2). As a result, the mechanism of revealed “anomalous” phenomena has been established. We found that nanosize clusters contribute to a significant increase in the basic parameter of the thermoelectric material’s thermoelectric efficiency. Scattering mechanism s of electrons on nanosize clusters has been also established. In addition the possible influence of nanoscale clusters as well as small point type defects on important parameters of the materials, in particular, the charge carriers concentration and mobility, electrons effectivemass, dispersion of the conduction band, and crystal lattice vibrations have been analyzed. Using the properties of small defects, radiation-resistant materials were created, with standing very high dose of hard radiation.
Keywords
Nanosize Clusters, Radiation, Semiconductors
To cite this article
Nodar Kekelidze, Elza Khutsishvili, Zaur Kvinikadze, Zinaida Davitaja, David Kekelidze, Bela Kvirkvelia, Ketevan Sadradze, Lali Nadiradze, George Kekelidze, Nanosize Clusters in InAs and InP Compounds and Their Solid Solutions InPxAs1–x, American Journal of Nano Research and Applications. Special Issue: Nanotechnologies. Vol. 5, No. 3-1, 2017, pp. 48-55. doi: 10.11648/j.nano.s.2017050301.21
Reference
[1]
X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and Ch. M. Lieber, “InAs/InP radial nanowire heterostructures as high electron mobility devices,” Nano Lett., vol. 7, p. 3214, 2007.
[2]
L. Romeo, S. Roddaro, A. Pitani, D. Ercolani, L. Sorba, and F. Beltran, “Electrostatic spin control in InAs/InP nanowire quantum dots,” Nano Lett., vol. 12, p. 4490, 2012.
[3]
D. W. Stokes, J. H. Li, R. L. Forrest, S. L. Ammu, J. C. Lenzi, S. C. Moss, B. Z. Nosho, E. H. Aifer, B. R. Bennett, and L. J. Whitman, “Optical and structural properties of InAs/GaSb nanostructures,” Mater. Res. Soc. Symp. Proc., vol. 794, no. T9.9, 2004.
[4]
T. C. Newell, D. J. Bossert, A. Stintz, B. Fuch, K. J. Malloy, and L. F. Lester, “Gain and line width enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Phot. Technol. Lett., vol. 11, p. 1527, 1999.
[5]
Y. Kuwahara, H. Oyanagi, Y. Takeda, H. Yamaguchi, and M. Aono, “Bond length relaxation in ultrathin GaxIn1–xP and InPxAs1–x layers on InP(100),” Appl. Sur. Sci., vol. 60/61, p. 529, 1992.
[6]
K. Zdansky, L. Pekarek, and P. Kacerovsky, “Evaluation of semi-insulating Ti-doped and Mn-doped InP for radiation detection”, Semicond. Sci. Technol., vol. 16, p. 1002, 2001.
[7]
A. Andrievcky, “The thermal stability of nanomaterials,” Uspekhi – Chem., vol. 71, р. 968, 2002.
[8]
V. I. Roldugin, “Self-organization of nanoparticles at interphase surfaces,” Uspekhi – Chem., vol. 73, р. 123, 2004.
[9]
U. D. Tretjakov, “Self-organization processes in chemistry of materials,” Uspekhi – Chem., vol. 72, р. 731, 2003.
[10]
L. W. Aukerman, “Electron irradiation of indium arsenide,” Phys. Rev., vol. 115, p. 1133, 1959.
[11]
W. Walukievicz, “Mechanism of Schottky barrier formation: The role of amphoteric native defects,” J. Vac. Sci. Technol., vol. 5, p. 1062, 1987.
[12]
H. Gerstenberg, “Transport properties of degenerate InS band InAs after fast neutron irradiation at low temperature,” Phys. Stat. Sol. A, vol. 128, p. 483, 1991.
[13]
E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., vol. 93, p. 632, 1954.
[14]
B. I. Shklovskii and A. L. Efros, “Electronic properties of doped semiconductors,” JETP, vol. 59, p. 1343, 1970.
[15]
N. P. Kekelidze and G. P. Kekelidze, “Optical absorption near the threshold in n-type crystals InP, InAs and solid solutions InPxAs1–x,” Phys. Lett. A, vol. 42, p. 129, 1972.
[16]
G. D. Watkins, J. W. Corbett, and R. M. Walker, “Spin resonance in electron irradiated silicon,” J. Appl. Phys., vol. 30, p. 1198, 1959.
[17]
J. W. Corbett and J. C. Bourgoin, “Point Defects in Solids, vol. 2,” Ed. J. H. Crawford, New York, Plenum Press, 1975.
[18]
N. P. Kekelidze, G. P. Kekelidze, and Z. D. Makharadze, “Lattice vibration of AsxP1–xIn solid solutions,” J. Phys. Chem. Solids, vol. 34, p. 2117, 1973.
[19]
R. J. Nicholas, R. A. Stradling, J. C. Portal, and S. Askenazy, “The magnetophonon effect in InAs1–xPx,” J. Phys. C, vol. 12, p. 1653, 1979.
[20]
D. N. Talvar, M. Mandevyver and M.Zigone, “Impurity induced Raman scattering spectra in zincblende-type crystals: Application to mixed indium pnictides,” J. Phys C, vol. 13, p. 3775, 1980.
[21]
D. J. Lockwood, N. L. Rowell, and G. Yu, “Optical phonons in InP1–xAsx revisited,” J. Appl. Phys., vol. 102, no. 033512, 2007.
[22]
A. Y. Shik, “Electronic properties of inhomogeneous semiconductors,” Electron Component Science Monographs, London, Gordon & Breach Publ., 1995.
[23]
R. Mansfield, “Impurity scattering in semiconductors,” Proc. Phys. Soc. B, vol. 69, p. 76, 1956.
[24]
F. J. Blatt, “Theory of Mobility of Electrons in Solids,” New York, Academic Press Inc., 1957.
[25]
H. Ehrenreich, “Electron mobility of indium arsenide phosphide (InAsyP1−y),” J. Phys. Chem. Solids, vol. 12, p. 97, 1959.
[26]
A. I. Anselm, “Introduction to the Theory of Semiconductors,” Moscow, Nauka, 1978.
[27]
L. Makowski and M. Glicksman, “Disorder scattering in solid solutions of III–V semiconducting compounds,” J. Phys. Chem. Solids, vol. 34, p. 487, 1973.
[28]
J. L. McNichols and N. Berg, “Neutron-induced metallic spike zones in GaAs,” IEEE Trans. Nucl. Sci., vol. 18, p. 21, 1971.
Browse journals by subject