Volume 5, Issue 3-1, May 2017, Page: 64-67
Specific Interface Capacitance of Nanocomposite Materials
Levan Chkhartishvili, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Shorena Dekanosidze, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Ramaz Esiava, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Ia Kalandadze, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Dato Nachkebia, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Grisha Tabatadze, Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia
Received: Mar. 29, 2017;       Accepted: Mar. 30, 2017;       Published: Apr. 11, 2017
DOI: 10.11648/j.nano.s.2017050301.24      View  1218      Downloads  65
Abstract
Based on a model of interfaces existing between particles of different components, there is obtained the formula to estimate the capacitance of nanocapacitors spontaneously built in nanocomposite materials. The specific (per unit area) interface capacitance depends on the material’s characteristics such as: average width of the vacuum gap between the particles of two components, their dielectric constants, absolute values of the space charge average densities in components, and internal voltage corresponding to the difference of work functions of components. The electric capacitance associated with the internal interfaces can significantly affect electronic characteristics and, particularly, dielectric properties of nanocomposite materials.
Keywords
Capacitance, Nanocomposite, Interface
To cite this article
Levan Chkhartishvili, Shorena Dekanosidze, Ramaz Esiava, Ia Kalandadze, Dato Nachkebia, Grisha Tabatadze, Specific Interface Capacitance of Nanocomposite Materials, American Journal of Nano Research and Applications. Special Issue:Nanotechnologies. Vol. 5, No. 3-1, 2017, pp. 64-67. doi: 10.11648/j.nano.s.2017050301.24
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
S. R. Ekanayake, M. Ford, and M. Cortie, “Metal–insulator– metal (MIM) nanocapacitors and effects of material properties on their operation,” Mater. Forum, vol. 27, pp. 15-20 (2004).
[2]
N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett., vol. 95, no. 095504 (2005).
[3]
J. I. Sohn, Y.-S. Kim, Ch. Nam, B. K. Cho, T.-Y. Seong, and S. Lee, “Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbonnanotubes,” Appl. Phys. Lett., vol. 87, pp. 123115 (2005).
[4]
S. K. Saha, M. Da Silva, Q. Hang, T. Sands, and D.B. Janes, “A nanocapacitor with giant dielectric permittivity,” Nanotechnol., vol. 17, pp. 2284-2288 (2006).
[5]
R. Montelongo, D. González, R. Bustos, and G. González, “Nanocapacitor with a Cantor multi-layered structure,” J. Mod. Phys., vol. 3, pp. 1013-1017 (2012).
[6]
L. C. Haspert, S. B. Lee, and G. W. Rubloff, “Nanoengineering strategies for metal–insulator–metal electrostatic nano- capacitors,” ACS Nano, vol. 6, no. 352836 (2012).
[7]
G. González, E. S. Kolosovas–Machuca, E. López–Luna, H. Hernández–Arriaga, and F. J. González, “Design and fabrication of interdigital nanocapacitors coated with HfO2,” Sensors, vol. 15, pp. 1998-2005 (2015).
[8]
L. Wei, Q.-X. Liu, B. Zhu, W.-J. Liu, Sh.-J. Ding, H.-L. Lu, A. Jiang, and D. W. Zhang, “Low-cost and high-productivity three-dimensional nanocapacitors based on stand-up ZnO nanowires for energy storage,” Nanoscale Res. Lett., vol. 11, no. 213 (2016).
[9]
Q. Li, Ch. Patel, and H. Ardebili, “Mitigating the dead-layer effect in nanocapacitors using graded dielectric films,” Int. J. Smart & Nano Mater., vol. 3, pp. 23-32 (2012).
[10]
G. Shi, Y. Hanlumyuang, Zh. Liu, Y. Gong, W. Gao, B. Li, J. Kono, J. Lou, R. Vajtai, P. Sharma, and P. M. Ajayan, “Boron nitride–grapheme nanocapacitor and theorizing of anomalous size-dependent increase of capacitance,” Nano Lett., vol. 14, pp. 1739-1744 (2014).
[11]
Ch. Hao, B. Yang, F. Wen, J. Xiang, L. Li, W. Wang, Zh. Zeng, B. Xu, Zh. Zhao, Zh. Liu and Y. Tian, “Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes,” Adv. Mater., vol. 28, pp. 3194-3201 (201).
[12]
M. Stengel and N.A. Spaldin, “Origin of the dielectric dead layer in nanoscale capacitors,” Nature, vol. 443, pp. 679-682 (2006).
[13]
L. S. Chkhartishvili, “Calculation of capacitance of nano-sized capacitors,” In: Mater. 6th All-Russ. Conf. Nanomater.. (NANO 2016), Moscow, Inst. Metallurgy RAS, pp. 436-437 (2016).
[14]
L. Chkhartishvili, M. Beridze, Sh. Dekanosidze, R. Esiava, I. Kalandadze, N. Mamisashvili, and G. Tabatadz, “How to calculate nanocapacitance,” Am. J. Nano Res. Appl., vol. 5(3-1), pp. 9-12 (2017).
[15]
L. Chkhartishvili, A. Gachechiladze, O. Tsagareishvili, and D. Gabunia, “Capacitances built in nanostructures,” In: “Abs. 18th Int. Metall. Mater. Cong.,” Istanbul, ChMME, pp. 243-243 (2016).
[16]
L. S. Chkhartishvili, “Specific interface capacitance in composite,” In: “Proc. 9th Int. Conf. MEE,” 2016, Kyiv, IPMS, pp. 54-54.
[17]
L. Chkhartishvili, “Nanoparticles near-surface electric field,” Nanoscale Res. Lett., vol. 11, no. 48 (2016).
[18]
L. Chkhartishvili. Nanostructure makes crystalline compound physically reactive. Atlas Sci., no. April 14, pp. 1-2 (2016).
[19]
L. Chkhartishvili, L. Sartinska, and Ts. Ramishvili, “Adsorption selectivity of boron nitride nanostructures designed for environmental protection,” In: “Advanced Environmental Analysis: Applications of Nanomaterials,” vol. 1 (Eds. Ch. M. Hussain and B. Kharisov), Cambridge, Royal Soc. Chem., Ch. 8, pp. 167-192 (2017).
Browse journals by subject