A Study on the Effect of Fibre Dimensions on the Thermal Conductivity of Pineapple Leaf Fibre Reinforced Polypropylene Composites
Samuel Wadzani Gadzama,
Olufemi Kashim Sunmonu,
Umaru Semo Isiaku,
Abdullahi Danladi
Issue:
Volume 7, Issue 3, September 2019
Pages:
21-26
Received:
10 November 2019
Accepted:
2 December 2019
Published:
9 December 2019
Abstract: This research was carried out to study the thermal conductivity (TC) properties of pineapple leaf fibre (PALF) reinforced polypropylene (PP) composites. The pineapple leaf fibre dimensions were altered specifically at the macro, micro and nano dimensional states. It was considered that the thermal conductivity (TC) behavior of pineapple leaf fibre/polypropylene (PALF/PP) composites would be significantly higher when the pineapple leaf fibre which is the reinforcement agent undergoes dimensional changes. The study also considered the effect the fibre surface modification agents would have on the thermal behavior of the reinforced pineapple leaf fibre /polypropylene composites. The fibre surface modification agents used in this study are sodium hydroxide, zinc chloride, acetic anhydride and nitric acid. The guided plate steady state approach for determining thermal conductivity was used in this research. Results showed that the micro and nano fibrils of the reinforcing agent contributed to the enhanced thermal conductivity behavior of the reinforced pineapple leaf fibre/polypropylene composites. The results obtained also showed that the reinforced microfibrils pineapple leaf fibre /polypropylene composites and reinforced nanofibrils pineapple leaf fibre/polypropylene composites modified with nitric acid exhibits higher thermal conductivity than reinforced pineapple leaf fibre/polypropylene (PALF/PP) composites modified with acetic anhydride, zinc chloride, sodium hydroxide and the unmodified pineapple leaf fibre in descending order respectively.
Abstract: This research was carried out to study the thermal conductivity (TC) properties of pineapple leaf fibre (PALF) reinforced polypropylene (PP) composites. The pineapple leaf fibre dimensions were altered specifically at the macro, micro and nano dimensional states. It was considered that the thermal conductivity (TC) behavior of pineapple leaf fibre/...
Show More